Cours de chimie Organique - G. Dupuis - Lycée Faidherbe de Lille
Eléments de spectroscopie de RMN
Introduction
La découverte fondatrice de la résonance magnétique nucléaire est le fait du physicien américain d'origine austro-hongroise, I. Rabi. Ce dernier a obtenu le prix Nobel de physique en 1944 pour ses études concernant le moment magnétique du noyau [51].Théorie classique pour un noyau unique dans un champ magnétique en l'absence d'environnement chimique
On peut remarquer d'ores et déjà que le noyau de carbone 12C ne figure pas dans cette liste. Son moment magnétique intrinsèque est nul. Ce fait expérimental sera justifié plus loin.
Précession de Larmor L'application d'un champ magnétique statique externe B0, crée une interaction avec le moment magnétique m. Cette interaction entraîne l'apparition d'un couple de moment G.
Afin de comprendre l'effet de ce couple, appliquons le théorème du moment cinétique dans R0. Il se traduit par la relation suivante. Puisque : Cette relation permet de prévoir plusieurs propriétés :
Ce qui signifie que le moment magnétique m possède un module constant. L'angle entre le moment magnétique m et le champ magnétique B0 est donc constant. Le mouvement de l'extrémité du vecteur moment magnétique m est un cercle. Le vecteur moment magnétique effectue un mouvement de précession autour de la direction du champ magnétique. L'application d'un champ magnétique statique externe B0,. Ce mouvement s'appelle précession de Larmor. Le vecteur vitesse angulaire a pour expression : On notera que cette vitesse angulaire de précession est proportionnelle au champ appliqué.
La période correspondante vaut : Effectuons l'application numérique dans le cas d'un noyau d'hydrogène plongé dans un champ de 1 T. Le tableau ci-dessous regroupe les fréquences (inverse des périodes) pour différents noyaux dans un champ de 1 T.
Dans tout ce qui suit le référentiel du laboratoire, supposé galiléen, sera noté R0. Le moment magnétique d'un noyau de moment cinétique intrinsèque I a pour expression :
Noyau |
19F |
13C |
31P |
n0 / MHz |
40,06 |
17,24 |
9,71 |
Energie d'interaction entre un moment magnétique et un champ magnétique L'énergie d'interaction entre le moment magnétique et le champ magnétique B0, s'écrit :
Une modification de l'énergie d'interaction entre le moment magnétique m et le champ magnétique B0 doit s'accompagner d'une variation de l'angle entre ces deux vecteurs. Absorption d'énergie, résonance Appliquons dans le plan perpendiculaire à Oz, un champ magnétique B1 dont l'extrémité tourne autour de B0, dans le repère du laboratoire (O,x,y,z), avec une vitesse angulaire précisément égale à la vitesse angulaire de Larmor. Ce champ B1, appelé champ tournant, garde naturellement une direction fixe, au cours du temps, dans le repère tournant (OXYZ). De ce fait, son interaction avec le moment magnétique m, fixe, lui aussi dans le repère tournant, va être maximale. Le champ B1 est à l'origine d'un couple qui tend à faire basculer le moment magnétique m. Dans cette interaction, l'angle entre m et le champ magnétique B0 est modifié. Il y a donc une variation de l'énergie d'interaction. Cette variation d'énergie dans cette configuration particulière traduit un phénomène de résonance.
En suivant le même raisonnement que plus haut, on voit que le couple exercé par B1 va entraîner un nouveau mouvement de précession du moment magnétique, mais cette fois autour de l'axe OY (Fig. 3.)
Les calculs précédents se transposent immédiatement et la vitesse angulaire de précession vaudra :
puisque le champ B1 est beaucoup plus faible que B0 on aura :
Comment créer pratiquement un champ magnétique B1 tournant ?
.
L'énergie est donc aussi constante au cours du temps :
Pour y parvenir, on va faire appel à un champ magnétique supplémentaire.
A ce stade, il est commode, pour simplifier l'étude cinématique, d'introduire un nouveau repère appelé repère tournant R (OXYZ). Il s'agit d'un repère dont l'axe OZ est confondu avec l'axe Oz du repère fixe du laboratoire R0 et dont les axes OX et OY tournent par rapport aux axes Ox et Oy respectivement, avec la vitesse angulaire de Larmor.
Un champ magnétique oscillant au cours du temps suivant une direction fixe (par exemple Oy) avec une pulsation w0 égale à la pulsation de Larmor. peut être considéré comme la somme de deux vecteurs tournant en sens inverse autour de la direction Oz, avec une vitesse angulaire w0. A un instant donné, les trois vecteurs champ sont en effet conformes au schéma ci-contre.
Ce champ oscillant génère donc deux champs magnétiques B1 et B1' tournant en sens inverse à la vitesse angulaire w0. Seul le champ B1, qui garde une direction fixe, au cours du temps, dans le repère tournant (OXYZ) a une action sur le moment magnétique m .
Les limites du traitement classique sont bien étudiées à la référence [46].
Introduction de la quantification pour un noyau unique dans un champ magnétique en l'absence d'environnement chimique
Spin nucléaire Le spin nucléaire est une grandeur physique caractéristique d'un noyau qui permet de décrire ses propriétés magnétiques. Il s'agit d'une propriété quantique qui ne possède pas d'équivalent classique bien qu'une image élémentaire a consisté historiquement à l'associer à la rotation de la particule sur elle-même (to spin : tourner.) L'hypothèse de l'existence d'un spin nucléaire pour le proton a été émise par W. Pauli en 1924.
Nous allons rechercher une description plus fidèle à la réalité physique en faisant intervenir un certain nombre de propriétés quantiques. Les conditions de quantification vont être introduites comme une "couche théorique" plaquée sur les équations classiques. Il s'agit donc d'un traitement qu'on qualifie de "semi-classique". Une approche satisfaisante de la RMN ne peut être faite qu'en utilisant la mécanique quantique (pour une introduction, voir par exemple : [48].)
, est également quantifiée :
(h est la constante de Planck h = 6,62.10-34 J.s.) :
La valeur de I, dépend de la nature du noyau.
A |
Z |
I |
Exemples |
pair |
pair |
0 |
12C,16O,32S |
pair |
impair |
entier |
2H, 14N |
impair |
impair |
demi entier |
1H, 13C, 19F, |
Aspect quantique de l'énergie d'interaction entre un spin nucléaire et un champ magnétique Si Iz
En l'absence de champ magnétique, le moment magétique d'un noyau isolé peut prendre toutes les directions possibles et celles-ci correspondent à la même énergie (dégénérescence des niveaux d'énergie). Si l'on applique un champ magnétique extérieur B0, le noyau de moment magnétique m va interagir avec le champ.
La résolution du problème en mécanique quantique conduit à une énergie d'interaction formellement identique à celle obtenue par un traitement classique :
Soit, compte tenu de la relation entre spin nucléaire et moment magnétique de spin.
A ces deux valeurs de mI correspondent deux valeurs possibles pour l'énergie en présence d'un champ magnétique. L'énergie d'interaction la plus basse vaut :
Tandis que l'autre, est : L'écart entre les deux énergies vaut : Pour un champ de 1,4 T, on constate que cet écart est extrêmement faible : C'est pourtant sur cette différence d'énergie très faible que repose la spectroscopie de RMN. L'écart énergétique augmente proportionnellement au champ appliqué. On a donc intérêt à travailler avec un champ élevé si on veut l'accroitre. Cela explique qu'on cherche à produire expérimentalement des champs magnétiques de plus en plus élevés.Pour le proton, aux deux orientations de Iz, correspondent deux valeurs de l'angle q entre la direction de B0 et celle de I.
Condition de résonance pour un noyau unique en théorie quantique La fréquence n0 de la radiation électromagnétique permettant une absorption d'énergie entre les deux niveaux dont les énergies sont séparées de DE est telle que : On a vu plus haut que l'écart énergétique vaut :
Il y aura résonance s'il y a égalité entre ces deux grandeurs. On en déduit la condition :
On retrouve donc, une valeur égale à la vitesse angulaire de précession de Larmor. obtenue à partir de considérations de mécanique classique. avec : Pour le proton, g = 2,67522.108 rad.T-1.s-1. Dans un champ magnétique de 1 T, on obtient : Dans le spectre électromagnétique il s'agit du domaine des ondes utilisées en radiodiffusion. Transitions de résonance magnétique dans la matière Population des niveaux d'énergie
Il s'agit d'un système assez simple car il ne possède que deux niveaux.
Dans un échantillon de matière, il y a un très grand nombre de noyaux. En présence d'un champ magnétique, les moments magnétiques vont s'orienter de façon parallèle (a) ou bien antiparallèle (b) au champ.
Le schéma ci-dessous résume la situation en l'absence de champ magnétique (à gauche) et en présence d'un champ (à droite). La direction indiquée par les flèches est une direction moyenne puisque les moments magnétiques effectuent un mouvement de précession autour de l'axe Oz, direction du champ magnétique B0.
Compte tenu de la très faible valeur de la différence d'énergie entre les deux niveaux, on peut faire l'approximation suivante :
Cet écart entre les deux populations est extrêmement faible. Ce qui fait de la spectroscopie de RMN une méthode d'analyse peu sensible a priori. On comprend, l'intérêt qu'il y a à utiliser le champ magnétique le plus élevé possible afin d'accroître l'écart entre les populations des deux niveaux.
Description phénoménologique, vecteur aimantation
Au niveau macroscopique (ou plus précisément : mésoscopique), on introduit le vecteur aimantation M défini comme étant la somme vectorielle des moments magnétiques individuels, par unité de volume V (en anglais : magnetisation.)
Le vecteur aimantation M est une grandeur phénoménologique dont l'évolution au cours du temps peut, avec une bonne approximation, être décrite en termes classiques. Dans le système international d'unités, l'aimantation s'exprime en A.m-1.
Notons que la mesure directe de l'aimantation d'équilibre M0 est quasi-impossible car sa valeur, très faible la rend très difficile à extraire du bruit de fond. |
Comment induire des transitions dans la matière ?
De la même manière que pour un moment magnétique individuel étudié plus haut, l'idée est de provoquer une modification du vecteur aimantation au moyen d'un second champ magnétique de direction convenable appliqué pendant une durée limitée très courte. Il y a alors, comme on va le voir, création d'une aimantation dans le plan transversal.
En plus du champ statique B0, soumettons l'échantillon à un champ B1 tournant autour de Oz avec la vitesse angulaire de Larmor. Dans le repère tournant, ce champ garde une direction fixe. Dans le schéma ci-dessous, cette direction est OY.
Au niveau macroscopique, tout se passe comme si le vecteur aimantation était soumis à un couple de la part du champ B1. Ce couple va provoquer un basculement du vecteur aimantation dans un plan perpendiculaire à B1.
Le basculement se mesure par un angle f dans le plan XOZ.
La valeur de f est proportionnelle à l'intensité du champ magnétique et à la durée t d'excitation. En choisissant convenablement la durée de l'impulsion, on peut donc ajuster la valeur de f.
Une valeur de f = 180° correspondrait à une inversion complète de population conduisant à un retournement de l'aimantation dans un sens exactement opposé à l'aimantation d'équilibre (ne perdons pas de vue que le vecteur aimantation est la somme des moments magnétiques individuels.)
Une étude plus approfondie montre que si l'on se place cette fois à l'échelle microscopique, le basculement de f = 90° comme dans le dessin ci-dessus, entraîne deux phénomènes :
Phénomènes de relaxation
On appelle relaxation nucléaire l'évolution d'un système de spins nucléaires vers l'équilibre thermodynamique. Désignons par N l'écart du nombre de noyaux par rapport à la répartition de Boltzmann, celui-ci va évoluer selon
une cinétique du premier ordre.
Cet écart va donc suivre une loi exponentielle avec une constante de temps t.
On peut séparer le système étudié en deux sous-systèmes :Dans une première approche phénoménologique, l'évolution temporelle du système est décrite par le vecteur aimantation. Son évolution au cours du temps est donnée par les équations de Bloch.
La matrice diagonale fait intervenir deux temps de relaxation T1 et T2. Lors du retour du vecteur aimantation à l'équilibre, on distingue donc deux types de relaxation :
Le retour de la composante Mz de l'aimantation à sa valeur initiale M0z correspond à la relaxation longitudinale. Elle est due à un échange d'énergie entre les noyaux et leur environnement. Elle porte aussi le nom de relaxation spin-réseau. La constante de temps T1 est d'autant plus petite que les noyaux sont liés à des molécules de plus grande masse molaire. Compte-tenu de la faiblesse des interactions entre les spins et le réseau, la constante de temps est de l'ordre de quelques secondes pour un liquide mais elle peut atteindre plusieurs heures dans le cas des solides. |
Après le basculement, la composante transversale de l'aimantation va diminuer puis s'annuler avec un temps de relaxation T2. Ce phénomène est dû à une interaction entre les spins nucléaires qui provoque une perte de cohérence de phase des moments magnétiques dans leur mouvement autour de B0. Cette désynchronisation des aimantations élémentaires est appelé relaxation spin-spin. Elle s'effectue plus rapidement que le retour à l'équilibre de la composante longitudinale. Le temps de relaxation T2 est donc toujours inférieur au temps de relaxation T1. Ce processus de relaxation est associé à une perte de cohérence des moments magnétiques donc a une modification de l'ordre à énergie globale constante. Il a un aspect entropique. Cette perte de cohérence ne peut être justifiée que par un calcul quantique. |
Si l'on s'intéresse à l'une des composantes transversales, par exemple Mx, on obtient une sinusoïde amortie dont l'allure est donnée ci dessous.
Un tel signal provoque par induction un signal dans une bobine placée le long de l'axe Ox. C'est ce signal dit de précession libre (en anglais : free induction decay en abrégé : FID) qui est enregistré.
Remarque : la perte de cohérence de phase des moments magnétiques est un phénomène dont l'explication correcte ne peut être donnée qu'en utilisant la mécanique quantique : consulter [2]
Lorsqu'un couplage dipolaire entre spins est possible, il existe un autre type de processus de relaxation à l'origine de l’effet Overhauser nucléaire.
Constitution d'un spectromètre RMN
Appareils à onde continue Le schéma ci-dessous décrit le principe d'un appareil appartenant à la première catégorie. Spectroscopie impulsionnelle Lors du retour du vecteur aimantation à sa valeur initiale, la décroissance de la composante longitudinale induit une tension pseudo-périodique aux bornes d'une bobine de détection. Si cette bobine est placée le long de l'axe Ox, la grandeur détectée sera la composante de l'aimantation transversale suivant cet axe, c'est à dire Mx. Au cours du temps, cette tension varie dans le repère du laboratoire selon une loi sinusoïdale exponentiellement amortie.
S'il n'y a dans l'échantillon qu'un seul type de noyau, le signal est constitué d'une seule sinusoïde amortie. L'allure de la courbe donnant le signal en fonction du temps a alors l'allure suivante. Un composé contient en général plusieurs noyaux placés dans des environnements chimiques différents. L'impulsion contenant toute une bande de fréquences, il y aura autant de signaux de résonance de fréquences différentes que de groupes de noyaux dans des environnements différents. Au lieu d'une seule sinusoïde amortie, on va donc obtenir une courbe plus complexe qui correspond à la superposition de nombreuses sinusoïdes amorties de fréquences variées.
Pour observer la résonance d'un ensemble de spins, il y a a priori deux façons de procéder :
La technique de spectroscopie de RMN impulsionnelle (on dit aussi parfois RMN "pulsée" de l'anglais : pulse.) a été découverte par le physico-chimiste suisse Richard Ernst en 1966. Elle consiste à irradier l'échantillon étudié à l'aide d'une série d'impulsions électromagnétiques de durée très courte (quelques microsecondes) qui contiennent la gamme de fréquences à étudier [26].
Supposons que la substance ne comporte qu'un seul type de noyaux. Il y aura absorption d'énergie lorsque l'une des fréquence de la gamme de fréquences envoyée correspondra à la fréquence de résonance de ce noyau. Comme on l'a vu plus haut, une telle excitation fait basculer le vecteur aimantation d'un certain angle (par exemple 90°). Lorsque l'impulsion cesse, l'aimantation reprend après une certaine durée, sa valeur initiale de direction colinéaire au champ magnétique.
Pour une sinusoïde amortie, la transformée de Fourier dans l'espace des fréquences est une raie unique. Pour un signal complexe, on aura autant de raies de fréquences différentes qu'il y a de groupes de noyaux différents.
En résumé une expérience de spectroscopie comporte trois phases : impulsion, acquisition du signal, transformation de Fourier.
L'un des grands intérêts de la RMN impulsionnelle est qu'on peut se livrer à une suite d'expériences successives afin d'accumuler le maximum de données avant de procéder à la transformation de Fourier. Comme le bruit de fond est aléatoire cela a pour effet d'accroître considérablement le rapport signal sur bruit.
Les appareils modernes fonctionnent sur ce principe (en anglais : FT-NMR : Fourier transform nuclear magnetic resonance.)
Les travaux de R. Ernst, et les développements qu'ils ont suscités lui ont valu le prix Nobel de Chimie en 1991 [26]. Pour la petite histoire, notons que l'article original dans lequel la spectroscopie de RMN impulsionnelle est introduite, a été refusé deux fois par le Journal of Chemical Physics avant d'être finalement publié dans une revue consacrée aux instruments scientifiques [64].
|
|
Parmi les facteurs qui déterminent la largeur des raies, les processus de relaxation sont donc très importants. D'une façon générale, des temps de relaxation courts entraînent un élargissement des raies et inversement. Il est possible de préciser les choses lorsqu'on connaît le profil de la répartition spectrale. Si celle-ci obéit à une courbe de Lorentz.
La représentation graphique est donnée ci-dessous :
La largeur a mi-hauteur a pour expression :
Puisque l'on enregistre les variations de l'aimantation transversale, la raie sera d'autant plus fine que la durée de relaxation spin-spin est plus grande.
Déplacement chimique
Définition
La découverte du "déplacement chimique" (en anglais : chemical shift) date de 1950, indépendamment par W. G. Proctor, F. C. Yu (Stanford University) [61], et W. C. Dickinson (MIT) [62].
Il s'agit d'un effet très fin dont l'origine provient du fait que dans un échantillon de matière, tous les noyaux ne se trouvent pas dans le même environnement. Le champ appliqué engendre de la part des électrons entourant le noyau, un champ induit bi qui s'oppose au champ appliqué. A l'échelle macroscopique cela revient à dire que les électrons forment un écran autour du noyau . On dit aussi que le noyau est blindé.
Cet effet d'écran (en anglais : shielding) peut être caractérisé par une grandeur si qui dépend de l'atome, appelée constante d'écran. Sa valeur est très faible (en moyenne de l'ordre de 10-5.)
En première approximation bi est proportionnel au champ appliqué.
Le champ magnétique au niveau d'un proton (i) sera la somme vectorielle du champ appliqué et du champ créé par la circulation électronique.
Pour obtenir la résonance, on a deux possibilités : soit fixer la fréquence et faire varier très lentement le champ extérieur appliqué, soit l'inverse.
On en déduit la fréquence de résonance.
La fréquence de la radiation permettant d'atteindre la résonance est donc plus petite que pour un proton dépourvu d'environnement chimique.
Le champ magnétique utilisé pour atteindre la résonance est plus élevé que pour un proton dépourvu d'environnement chimique. Plus la densité électronique autour du noyau est grande, plus la constante d'écran est élevée et plus le champ B0i à appliquer est grand.
Au début de l'étude de la RMN, pour les physiciens qui effectuaient des mesures de moment magnétique des noyaux, le fait que ceux-ci, plongés dans des environnements chimiques différents résonnaient à des fréquences légèrement différentes était une complication expérimentale. C'est J. T. Arnold, S. S. Dharmatti, et M. E. Packard qui montrèrent en 1951 tout l'intérêt que pouvait présenter ce phénomène pour les chimistes [65] (le fameux spectre historique de l'éthanol présentant les trois pics caractéristiques est reproduit à la référence [48].)
On trouvera à la référence [47], un historique des applications du déplacement chimique. Voir aussi l'article : [66]
Repérage du déplacement chimique
Face à l'impossibilité pratique de trouver des noyaux dépourvus d'environnement chimique, on utilise une substance de référence pour repérer les champs auxquels résonnent les différents types de protons. Le tétraméthylsilane (TMS) a été choisi car ce composé combine plusieurs avantages :
Le glissement relatif de fréquence, noté d, est appelé déplacement chimique (en anglais : chemical shift). Sa valeur est très faible. C'est la raison pour laquelle on multiplie la fraction par 106 et on exprime d en parties par million (ppm).
On peut écrire avec une très bonne approximation :
L'intérêt du déplacement chimique réside dans le fait qu'il s'agit d'une grandeur relative, indépendante de la fréquence de travail n0 du spectromètre et qui diffère d'un appareil à l'autre.
de même :
Dans les premiers spectromètres de RMN, la fréquence de l'onde électromagnétique était fixe et la résonance était obtenue par un lent balayage du champ qui augmentait de gauche à droite sur les spectres. Ce sens a été conservé pour le champ. Du fait de cette convention, le déplacement chimique croit de droite à gauche sur un spectre.
Dans le spectre suivant, le déplacement chimique des protons est d'autant plus grand qu'ils sont plus proches de l'atome d'oxygène qui est le plus électronégatif.
Un autre effet à prendre en considération est l'anisotropie de la de la susceptibilité magnétique de la molécule à l'origine de courants de cycles. On interprète ainsi :
Topicité
La notion de prochiralité a été définie en stéréochimie. Des protons placés dans le même environnement chimique possèdent le même déplacement chimique. On dit qu'ils sont isochrones. On peut ainsi dresser le tableau suivant.
Composés |
Identiques |
Enantiomères |
Diastéréoisomères |
Type de proton |
homotopiques |
énantiotopiques |
diastéréotopiques |
Isochronie |
toujours |
non en solvant chiral |
non |
Déplacements chimiques de protons diastéréotopiques Certaines réactions provoquent l'apparition de protons diastéréotopiques qui peuvent donc être distingués en RMN. Un exemple d'une telle situation se rencontre lors de l'addition d'un nucléophile sur les faces prochirales d'un groupe carbonyle. Dans l'a-bromocétone de départ, les protons du méthylène sont énantiotopiques.
La création du centre chiral rend les protons du méthylène diastéréotopiques. Quelle que soit la conformation, ces protons ne sont jamais dans le même environnement. Ces protons se traduisent par un doublet dans le spectre ci-dessous. Courbe d'intégration Le couplage spin-spin Le couplage direct trouve son origine dans l'interaction entre les moments magnétiques de spin à travers l'espace. On peut montrer que l'énergie d'interaction correspondante a une valeur moyenne nulle en solution [1]. Nous allons examiner plus précisément le couplage indirect ou couplage scalaire. Le terme scalaire vient du fait que ce type de couplage ne fait pas intervenir la direction. On appelle système de spins un ensemble de spins couplés de façons scalaire. On distingue les couplages :
Un cas intéressant est celui de deux protons d'un groupe méthylène situé en a d'un centre chiral. Dans la molécule ci-dessous, les protons Ha et Hb sont diastéréotopiques. Quelle que soit la conformation, l'environnement chimique de Ha est différent de celui de Hb. Leur déplacement chimique est donc différent.
Couplage |
Nombre de liaisons |
Nom |
2J |
2 |
géminal |
3J |
3 |
vicinal |
4J |
4 |
longue distance |
Nous allons commencer par raisonner sur l'exemple du couplage entre deux protons en utilisant un modèle simple.
On en déduit que le couplage est parfaitement réciproque et se caractérise par une constante de couplage unique.
Le couplage scalaire entre deux noyaux est donc caractérisé par une seule constante de couplage J dont la valeur dépend de la nature des noyaux couplés. Le couplage n'est pas influencé par le champ appliqué car il fait intervenir le champ créé par les protons voisins. La constante de couplage est donc indépendante du champ appliqué.
Dans le spectre, le signal de A va être éclaté en deux pics. L'écart entre les pics est égal à la constante de couplage exprimée en Hz.
Puisque le couplage est réciproque, le signal de X est aussi éclaté en deux composantes avec le même écart.
Equivalence magnétique
Heureusement, tous les couplages entre noyaux ne sont pas observables (même si le couplage existe) car cela entraînerait une très grande complication des spectres. Pour que les couplages entre noyaux n'apparaissent pas dans un spectre, ceux-ci doivent être magnétiquement équivalents.
Considérons un ensemble de noyaux Ai. On dit que ces noyaux sont magnétiquement équivalents si, et seulement si :
Dans l'exemple suivant, les noyaux A et A' ne sont pas isogames car ils n'ont pas les mêmes constantes de couplages avec les noyaux X et X'. Il s'agit d'un système AA'XX' et non d'un système A2X2.
De même dans l'exemple ci-dessous A et A' ne sont pas isogames.
En revanche, les noyaux A et A' sont isogames dans la molécule suivante. Leur couplage est invisible dans le spectre. Il s'agit d'un système A2X.
Tout comme l'équivalence chimique, l'équivalence magnétique peut être le fruit d'une moyenne qui résulte d'un mouvement interne de la molécule qui s'effectue avec une durée caractéristique beaucoup plus courte que le temps de relaxation T2. Le spectre du système suivant dépend de la température.
Protons |
H1H2 |
H3H4 |
H5 |
Système |
AA' |
BB' |
C |
Protons |
H1H2 |
H3H4 H5 |
Système |
A2 |
B3 |
Remarque : dans les exemples précédents les protons H1 et H2 sont énantiotopiques et ils sont donc isochrones (dans un solvant achiral). Il n'en serait pas de même si la présence voisine d'un centre chiral les rendait diastéréotopiques.
Ordre des couplages Lorsqu'un système de protons est analysable au premier ordre les groupes de protons chimiquement équivalents sont désignés par des lettres éloignées dans l'alphabet. Par exemple deux protons sont désignés par AX. Trois protons couplés par AMX.
Si la condition précédente n'est pas réalisée, le couplage est fort. On dit que le spectre est du second ordre. Le nombre et l'intensité des raies sont modifiées. Les déplacements chimiques ne peuvent pas être lus directement sur le spectre. L'analyse spectrale ne peut être effectuée que par le calcul.
De même, la mesure directe de J n'est plus possible.
On peut revenir à un spectre du premier ordre en augmentant le champ magnétique. En effet, la constante de couplage est indépendante du champ appliqué mais la différence de fréquence entre deux noyaux croit avec lui.
Le couplage est faible, lorsque :
On dit que le spectre est analysable au premier ordre. En pratique, on utilise le critère :
D'une façon générale, si un noyau donné possède N noyaux voisins équivalents, son signal sera décomposé en N + 1 pics et les intensités relatives sont données par le développement de (1 + x)N.
Les intensités relatives des pics des multiplets sont retrouvées facilement au moyen du triangle de Pascal.Couplage géminal
On appelle couplage géminal, le couplage entre deux protons liés à un même atome de carbone. Ce type de couplage n'est pas fréquemment observé car les protons géminés sont souvent rendus magnétiquement équivalents en moyenne par les mouvements conformationnels. La constante de couplage est négative. Sa valeur absolue dépend fortement de l'angle entre les liaisons.
En série cyclique, le couplage géminal est observable dans les systèmes suivants.
Dans le premier, le basculement conformationnel est bloqué du fait de la présence du groupe tertiobutyle. Dans le second, la rigidité du système bicyclique, interdit l'échange entre les atomes d'hydrogène endo et exo.
En série acyclique, on observe ce type de couplage entre protons diastéréotopiques. Un cas particulièrement important est celui d'un groupe méthylène adjacent à un centre chiral.
Couplage vicinal L'étude de la conformation des cycles peut être menée à bien grâce à cette méthode.
Il s'agit du couplage entre des protons séparés par trois liaisons. La constante de couplage est souvent notée 3J.
Dans la molécule suivante, le couplage n'apparaît pas car les protons sont magnétiquement équivalents.
L'allure de la courbe donnant 3JHH en fonction de l'angle dièdre est donnée ci-dessous :
Protons |
HaxHax |
HaxHéq |
HéqHéq |
q (°) |
180 |
60 |
60 |
3J |
11,8 |
3,9 |
3,9 |
Si la conformation n'est pas rigide, on observe des valeurs moyennes du fait du basculement conformationnel.
Comme application, considérons les spectres RMN des composés I et II. Le basculement conformationnel est bloqué grâce à la présence du groupe tertiobutyle :La spectroscopie de RMN permet de distinguer les composés éthyléniques diastéréoisomères.
Couplage à longue distance On observe des couplages à très longue distance (jusqu'à 9J) chez les polyynes.
Couplage fort La figure ci-dessous montre l'évolution d'un système AX au fur et à mesure que le rapport Dn/J, diminue. Lorsque la différence des déplacements chimiques augmente, le système AB se rapproche graduellement d'un système AX.
Au contraire quand elle tend vers zéro, les pics externes disparaissent quelle que soit la valeur de J. On obtient un pic unique. C'est pour cette raison que des protons magnétiquement équivalents apparaissent sous la forme d’un signal unique.
Phénomènes d'échange de protons Comme on peut le prévoir, la vitesse du phénomène d'échange dépend de la température, du solvant. Des traces d'acide catalysent la transformation. Les figures ci-dessous représentent les spectres RMN du méthanol pur enregistrés respectivement à -65 °C et à 40 °C. On interprète ce résultat expérimental par un échange rapide des protons entre toutes les molécules de méthanol qui intervient seulement à partir d'une certaine température. En dessous de celle-ci, chaque proton reste un temps suffisamment long sur une molécule donnée pour que le couplage se manifeste. En revanche, lorsque la température est plus élevée il y a découplage des spins. Pour une analyse théorique de l'échange chimique : consulter [50] Effet Overhauser
nucléaire En revanche, soumettons le spin A à une irradiation à sa fréquence de résonance jusqu'à ce qu'il y ait saturation. Cela a pour effet de faire disparaître le signal relatif à A. Mais, si les spins A et S sont couplés, un phénomène de relaxation croisée va pouvoir transférer de l'aimantation, du spin saturé A au spin S couplé avec lui. C'est l'effet Overhauser nucléaire (en anglais : nuclear Overhauser effect ou nOe) découvert en 1950 par le physicien américain Albert Overhauser. Pour davantage d'informations, consulter [45].
L'effet Overhauser nucléaire est très sensible à la distance entre les protons couplés. C'est pourquoi il est à la base de méthodes très utiles pour la détermination de structures en RMN. En particulier il est utilisé pour différencier des diastéréo-isomères. Dans l'exemple suivant, les protons (A) et (S) manifestent un effet nOe beaucoup plus important dans la molécule II que dans la molécule I du fait de leur plus grande proximité dans l'espace dans le second cas. Bibliographie
Lorsque le nombre de liaisons séparant les protons couplés est supérieur ou égal à 4, on parle de couplage à longue distance. Ce type de couplage est observé dans des structures en M ou en W telles que celles qui sont représentées ci-dessous.
Des pics parfaitement symétriques n'apparaissent que dans le cas où la différence des fréquences de résonance nA - nX des groupes de noyaux A et X est beaucoup plus élevée que la constante de couplage J.
On peut montrer par un calcul de mécanique quantique, que les niveaux énergétiques des deux noyaux ne peuvent jamais s'intercaler. Afin d'éviter un tel croisement des niveaux, les pics intérieurs ont une intensité qui croit aux dépens des pics extérieurs dont l'intensité diminue. Les barycentres des doublets restent fixes à la valeur (nA + nX)/2.
On donne le nom de quadruplet AB à ce type de spectre. Le rapprochement des lettres A et B dans l’alphabet indique que la différence nA- nB n’est pas grande devant la constante de couplage.
Le phénomène d'échange de protons est un cas particulier d'échange chimique qui s'observe chaque fois que des protons sont suffisamment mobiles pour pouvoir être échangés entre plusieurs molécules en solution. On va rencontrer ce phénomène dans les familles de composés où le proton est lié à un hétéroatome donc dans une liaison polarisée : les alcools, les amines. Le mécanisme d'échange fait intervenir des associations via des liaisons hydrogène. En présence d'un solvant tel que le DMSO qui bloque les échanges de protons entre molécules en formant avec eux des associations plus fortes, le couplage peut redevenir observable [36].
Considérons deux spins A et S suffisamment proches dans l'espace pour qu'une interaction dipolaire entre-eux puisse se manifester. Cette distance doit être typiquement inférieure à 500 pm car l'interaction, qui varie en 1/r6, s'amortit rapidement avec l'éloignement. L'interaction dipolaire ne se traduit pas par un éclatement des raies d'absorption en milieu isotrope (comme c'est le cas avec le couplage scalaire) car la valeur moyenne de l'énergie d'interaction, qui dépend de la direction des spins, est globalement nulle.
Voir la page personnelle de l'auteur (téléchargement de plusieurs chapitres ; voir aussi les documents de cours.)
[2] P. J. Hore - Nuclear Magnetic Resonance, Oxf Chemistry Primers, Oxford University Press (1995.)
[3] R. J. Abraham, J. Fischer, P. Lofthus - Introduction to NMR Spectroscopy, Wiley New-York (1991.)
[4] R. K. Harris - Nuclear Magnetic Resonance Spectroscopy, Longman, London (1986.)
[5] P. Atkins - Molecular Quantum Mechanics, Oxford University Press (1983.)
[6] P. Laszlo P. J. Stang - Spectroscopie Organique, Hermann (1972.)
[7] A. Abragham, Principles of Nuclear Magnetism (International Series of Monographs on Physics) Clarendon ; 3rd Edition, 1983 (niveau avancé.)
[8] T.C. Farrar
An Introduction To Pulse NMR Spectroscopy Farragut Press, Chicago, 1987.
[9] H. Günther, La spectroscopie de RMN, Masson, Paris, 1993.
[10] Chimie théorique, concepts et problèmes. M. Condat, O. Kahn, J. Livage, Hermann.
(Contient de nombreux exemples détaillés de calculs en chimie quantique : notamment étude du spin et des matrices de Pauli ; spectroscopie magnétique de l'atome H.)
[11] F.A. Bovey & L.W. Jelinski, Nuclear Magnetic Resonance, in Encyclopedia
of Polymer Science and Engeneering, Vol. 10, p. 245, Wiley, N.Y., 1986.
[20] Cours de RMN ; Université en ligne.
Excellent cours de RMN en français !
[21]
The Basics of NMR by J.P. Hornak
Sans doute l'un des cours de RMN en ligne le plus complet.
[22]
Imagerie par résonance magnétique nucléaire
Principes de la RMN, obtention des images en IRM,
interprétation du contraste etc.
[23]
MRI Resource Directory NMR
Site portail relatif à la RMN
[24] La RMN en phase liquide par D. Canet, Laboratoire de Méthodologie RMN Université de Nancy.
[25] Research in Nuclear Magnetism Edward M. Purcell, The Nobel Prize in Chemistry 1952
[26] Nuclear Magnetic Resonance Fourier Transform Spectroscopy Richard R. Ernst, The Nobel Prize in Chemistry 1991
[27] NMR Studies of Structure ans Function of Biological Macromolecules Kurt Wüthrich, The Nobel Prize in Chemistry 2002
[28] Histoire de la RMN autour de ses premiers acteurs par Maurice Goldman
[29] Aide et outils en RMN
[30] NMR spectroscopy I. Reich, Univ. Wisconsin, Madison.
[31] Cours de RMN
[32] Exemples de spectres de RMN Dr. Scott Van Bramer Widener Univeristy
[33] Cours de RMN à l'ESPCI
[34] Cours de RMN, Université de Montréal
[35] Etude de chaîne glycannique par RMN
[36] Spectroscopie de RMN, Université de Nice. Didacticiel
[37] Principes élémentaires de la RMN
[38] Centre RMN à très haut champ, Lyon Panorama de la spectroscopie de RMN par L. Emsley
[39] Cours de RMN par M. Petit
[40] Easy spin documentation (programme informatique et description quantique : matrices de Pauli, Hamitonien de spin etc.)
[41] The principle of nuclear induction F. Bloch, The Nobel Prize in Chemistry 1952
Maurice Goldman [28] rapporte la phrase suivante de Félix Bloch : « Quand les chimistes pénètrent dans un domaine, il est temps d’en sortir ! ». On retrouve la même idée mais vue du côté des chimistes par Packard (voir :
[65])
[42] Notion de RMN par impulsions. Cours de l'ESPCI
[43] RMN et IRM à l'institut matière et rayonnement de Saclay (comporte notamment : un bref historique de la spectroscopie de RMN par Claude Fermon.)
[44] The Nobel Prize in Physiology or Medicine 2003
Paul C. Lauterbur, Sir Peter Mansfield
[45] Effet Overhauser Nucléaire
[46] Cours de J. Mispelter, Institut Curie, Paris.
[47]
Early History of Nuclear Magnetic Resonance
[48]
Cours de RMN, Ecole Polytechnique. Théorie utilisant un formalisme quantique (introduction.) Contient le spectre de l'éthanol publié par Arnold et al. [65].)
[49]
Principe de la création d'un champ tournant.
[50]
Echange en RMN P. Vasos, Ecole Polytechnique Fédérale de Lausanne.
[51]
The Nobel Prize in Physics 1944, Isidor Isaac Rabi
[60] E. M. Purcell, H. C. Torrey, R. V. Pound, Phys. Rev., 69, 37 (1946) (découverte de la RMN.)
Bloch, F. ; Hansen, W. W. ; Packard, M. Phys. Rev. 1946, 69, 12 (découverte de la RMN.)
[61] W. G. Proctor, F. C. Yu, Phys. Rev., 77, 716 (1950) (découverte du déplacement chimique par W. G. Proctor et son équipe à Stanford. Au cours de la mesure du moment magnétique de NH4NO3, ils observèrent non pas un, mais deux signaux différents pour chaque noyau d'azote.)
[62] W.C. Dickinson ; « The Dependence of a Nuclear Magnetic Resonance Frequency upon Chemical Compound », Physical Review, 77, 736 (1950) (découverte du déplacement chimique au MIT sur le 19F.)
[63] L.M Jackman, F Sondheimer, A.A Bothner-By, Y. Gaoni, R. Wolovsky, Y. Amiel, D.A. Ben-Efraim, J Amer. Chem Soc. 84, 4307 (1962) (spectre RMN du 18-annulène : voir le chapitre sur les composés aromatiques.)
[64] Ernst, R. R. ; Anderson, W. A. Rev. Sci. Instrum. 1966, 37, 93. (article original relatif à la RMN impulsionnelle, refusé deux fois par Physical revue Letters puis finalement accepté par Rev. Sci. Instrum.)
[65] J. T. Arnold, S. S. Dharmatti, and M. E. Packard, J. Chem. Phys., 19 (1951) 507 (intérêt des chimistes pour le déplacement chimique ; fameux spectre de l'éthanol ; on prête à M. E. Packard, la phrase suivante : "chemists got the point very quickly, thanked the physicists, and took over"
! )
[66] A Short History of the Chemical Shift. Samuel. G. Levine. Department of Chemistry, North Carolina State University, Raleigh, NC 27695
J. Chem. Educ., 2001, 78 (1), p 133.
RETOUR AU MENU DU COURS
Vous pouvez, si vous le souhaitez, utiliser le contenu de cette page dans un but pédagogique et non commercial.
Texte, dessins, photographies : Gérard Dupuis - Lycée Faidherbe de LILLE
décembre 2012